
Adaptive Computing on the Grid Using AppLeS
Francine Berman, Member, IEEE Computer Society, Richard Wolski, Member, IEEE,

Henri Casanova, Member, IEEE, Walfredo Cirne, Holly Dail, Member, IEEE Computer Society,

Marcio Faerman, Student Member, IEEE, Silvia Figueira, Jim Hayes, Graziano Obertelli,

Jennifer Schopf, Member, IEEE, Gary Shao, Shava Smallen, Neil Spring,

Alan Su, and Dmitrii Zagorodnov

Abstract—Ensembles of distributed, heterogeneous resources, also known as Computational Grids, have emerged as critical

platforms for high-performance and resource-intensive applications. Such platforms provide the potential for applications to aggregate

enormous bandwidth, computational power, memory, secondary storage, and other resources during a single execution. However,

achieving this performance potential in dynamic, heterogeneous environments is challenging. Recent experience with distributed

applications indicates that adaptivity is fundamental to achieving application performance in dynamic grid environments. The AppLeS

(Application Level Scheduling) project provides a methodology, application software, and software environments for adaptively

scheduling and deploying applications in heterogeneous, multiuser grid environments. In this article, we discuss the AppLeS project

and outline our findings.

Index Terms—Scheduling, parallel and distributed computing, heterogeneous computing, grid computing.

�

1 INTRODUCTION

A Computational Grid [1], or Grid, is a collection of
resources (computational devices, networks, online

instruments, storage archives, etc.) that can be used as an
ensemble. Grids provide an enormous potential of capabil-
ities that can be brought to bear on large distributed
applications and are becoming prevalent platforms for
high-performance and resource-intensive applications.

The development and deployment of applications
which can realize a Grid’s performance potential face
two substantial obstacles. First, Grids are typically
composed from collections of heterogeneous resources
capable of different levels of performance. Second, the
performance that can be delivered varies dynamically as
users with competing goals share resources, resources fail,

are upgraded, etc. Consequently, Grid applications must
be able to exploit the heterogeneous capabilities of the
resources they have at their disposal while mitigating any
negative effects brought about by performance fluctuation
in the resources they use.

In this article, we describe the AppLeS project. AppLeS
(which is a contraction of Application Level Scheduling) is
a methodology for adaptive application scheduling. We
discuss various examples of adaptively scheduled Grid
applications that use AppLeS and the performance they can
achieve. We also describe software environments for
developing and/or deploying applications in a way that
leverages AppLeS methodology. Taken together, these
results define a novel approach to building adaptive,
high-performance, distributed applications for new distrib-
uted computing platforms.

2 APPLES: PRINCIPLES AND FUNDAMENTAL

CONCEPTS

Initiated in 1996 [2], the goals of the AppLeS project have
been twofold. The first goal has been to investigate adaptive
scheduling for Grid computing. The second goal has been to
apply research results to applications for validating the
efficacy of our approach and, ultimately, extracting Grid
performance for the end-user. We have achieved these goals
via an approach that incorporates static and dynamic
resource information, performance predictions, application
and user-specific information, and scheduling techniques
that adapt to application execution “on-the-fly.” Based on
the AppLeS methodology, we have developed template-
based Grid software development and execution systems
for collections of structurally similar classes of applications
(discussed in later sections of this article).

Although the implementation details differ for indivi-
dual examples of AppLeS-enabled applications, all are
scheduled adaptively and all share a common architecture.
Each application is fitted with a customized scheduling
agent that monitors available resource performance and
generates, dynamically, a schedule for the application.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003 1

. F. Berman and S. Smallen are with the San Diego Supercomputer Center,
9500 Gilman Drive MC 0505, La Jolla, CA 92093-0505.
E-mail: {berman, smallen}@sdsc.edu.

. R. Wolski and G. Obertelli are with the Department of Computer Science,
University of California Santa Barbara, Santa Barbara, CA 93106-5110.
E-mail: {rich, graziano}@cs.ucsb.edu.

. H. Casanova, H. Dail, M. Faerman, J. Hayes, G. Shao, A. Su, and D.
Zagorodnov are with the Department of Computer Science and Engineer-
ing, University of California San Diego, La Jolla, CA 92093-0114.
E-mail: {casanova, hdail, mfaerman, jhayes, gshao, alsu, dzagorod}@
sdsc.edu.

. W. Cirne is with the Departamento de Sistemas e Computação, Av. Aprı́gio
Veloso, s/n, Caixa Postal: 10.106, 58.109-970, Campina Grande, PB,
Brazil. E-mail: walfredo@dsc.ufpb.br.

. S. Figueira is with the Department of Computer Engineering, Santa Clara
University, Santa Clara, CA 95053. E-mail: sfigueira@scu.edu.

. J. Schopf is with the Distributed Systems Laboratory, Mathematics and
Computer Science Division, Argonne National Laboratory, Building 221,
9700 South Cass Avenue, Argonne, IL 60439-4844.
E-mail: jms@mcs.anl.gov.

. N. Spring is with Computer Science and Engineering, Sieg Hall,
University of Washington, Box 352350, Seattle, WA 98195-2350.
E-mail: nspring@cs.washington.edu.

Manuscript received 31 Oct. 2001; revised 23 Oct. 2002; accepted 31 Oct.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 115296.

1045-9219/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

The individual steps followed by an AppLeS agent are
depicted in Fig. 1 and are detailed below.

1. Resource Discovery—The AppLeS agent must dis-
cover the resources that are potentially useful to the
application. This can be accomplished using a list of
the user’s logins or by using ambient Grid resource
discovery services [3].

2. Resource Selection—The agent identifies and selects
viable resource sets from among the possible
resource combinations. AppLeS agents typically
use an application-specific resource selection model
to develop an ordered list of resource sets [4].
Resource evaluation typically employs performance
predictions of dynamically changing system vari-
ables (e.g., network bandwidth, CPU load) and/or
values gathered from previous application execu-
tions.

3. Schedule Generation—Given an ordered list of
feasible resource sets, the AppLeS agent applies a
performance model to determine a set of candidate
schedules for the application on potential target
resources. In particular, for each set of feasible
resources, the agent uses a scheduling algorithm to
determine “the best” schedule for the application on
just the target set (i.e., for any given set of resources,
many schedules may be possible).

4. Schedule Selection—Given a set of candidate
schedules (and the target resource sets for which
they have been developed), the agent chooses the
“best” overall schedule that matches the user’s
performance criteria (execution time, turnaround
time, convergence, etc.)

5. Application Execution—The best schedule is de-
ployed by the AppLeS agent on the target resources
using whatever infrastructure is available. For some
AppLeS, ambient services can be used (e.g., Globus
[5], Legion [6], NetSolve [7], PVM [8], MPI [9]). For
other AppLeS applications, deployment may be
performed “on the bare resources” by explicitly
logging in, staging data, and starting processes on
the target resources (e.g., via Ssh).

6. Schedule Adaptation—The AppLeS agent can ac-
count for changes in resource availability by looping
back to Step 1. Indeed, many Grid resources exhibit
dynamic performance characteristics and resources
may even join or leave the Grid during the
application’s lifetime. AppLeS targeting long-running
applications can then iteratively compute and
implement refined schedules.

Using this approach, we have developed over a dozen
AppLeS-enabled applications [2], [10], [11], [12], [13], [14],
[15], [16], [17], [4], [18], [19], some of which are used as
illustrating examples in the next section.

3 APPLES FUNCTIONALITIES AND APPLES
APPLICATIONS

In almost all cases, the development of an AppLeS
application has been a joint collaboration between dis-
ciplinary researchers and members of the AppLeS project
team. During such collaborations, the application scientists
provide an original parallel or distributed application code
which correctly solves their disciplinary problem. AppLeS
researchers then work with these scientists to modify the
application so that it can be dynamically scheduled by an
AppLeS scheduling agent. The result is a new application
consisting of domain-specific components and a custom
scheduling superstructure that is controlled by the AppleS
agent dynamically to effect a schedule for the target Grid
environment. After developing the AppLeS-enabled appli-
cation, the AppLeS team generally performs production
experiments or simulations to determine whether the
adaptive scheduling techniques are performance-efficient
compared to the original code and/or other scheduling
alternatives.

While each AppLeS agent is customized for its particular
application, they share the overall methodology depicted in
Fig. 1. The following sections describe various AppLeS-
enabled applications which illustrate the most important
concepts of the AppLeS methodology.

3.1 Resource Selection and Simple SARA
The Simple SARA AppLeS [11] demonstrates the AppLeS
resource selection step. SARA (Synthetic Aperture Radar
Atlas) is an application developed at the Jet Propulsion
Laboratory and the San Diego Supercomputer Center which
provides access to satellite images distributed in various
repositories [20]. The images are accessed via a Web
interface which allows the user to choose how the image
is processed and the site from which it can be accessed.
SARA is representative of an increasingly common class of
image acquisition applications with such exemplars as
Digital Sky [21] or Microsoft’s TerraServer [22].

In the SARA environment, images are typically repli-
cated at multiple sites. We developed an AppLeS called
“Simple SARA” that focuses only on resource selec-
tion—choosing the most performance-efficient site for
replicated image files. Previous to our work on this
application, the users were selecting servers “by hand”
via the SARA web interface.

On the surface, the selection of storage resources from
which to transfer a replicated SARA image file seems easy.
Users intuitively pick the closest storage resource geogra-
phically or perhaps the storage resource with the greatest
maximum bandwidth. However, network contention may
result in greatly degraded performance to the most
geographically proximate site and a site which is farther
geographically or has smaller bandwidth capacity, but is
relatively lightly loaded may actually exhibit greater
performance.

This was the case in a set of experiments we did with
the Simple SARA AppLeS at Supercomputing ’99 (an

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

Fig. 1. Steps in the AppLeS methodology.

international conference on high-performance computing)
in Portland, Oregon. As part of a demonstration system,
we placed replicated image files at the Oregon Graduate
Institute (OGI)—less than 10 miles from the conference
floor, the University of California, San Diego (UCSD)—-
over 1,000 miles from the conference floor, and the
University of Tennessee, Knoxville (UTK)—over 2,000
miles from the conference floor. The Simple SARA
AppLeS used the Network Weather Service (NWS) [23],
[24], a monitoring and forecasting facility commonly used
by AppLeS agents to provide dynamic predictions of end-
to-end available bandwidth. Available bandwidth predic-
tions were used to estimate data transfer times.

The results shown in Fig. 2 indicate that, during our
particular set of experiments (run during the conference
during the day), minimal data transfer time was never
achieved by transferring files to the conference exhibition
floor in Portland from the most geographically proximate
site (OGI in Portland). The best performance was generally
achieved by transferring the image from UCSD and
occasionally achieved by transferring the image from UTK.

The Simple SARA AppLeS uses NWS predictions of
Available Bandwidth in order to rank the available data
servers. Therefore, the AppLeS agent experiences the
network performance as the user does and chooses the best
data server consistently.

3.2 Performance Modeling and Jacobi2D

The Jacobi 2D AppLeS [2] provides a good demonstration of
the development of an application-specific performance
model which is used to generate a good candidate schedule
for a given set of feasible resources. We have since then
enhanced this performance model for Jacobi and for other
applications [14], [4], but, for simplicity, we describe here
our original model.

Jacobi 2D is a regular iterative code which continuously
updates a 2D matrix within a loop body between global
error-checking stages. Computation consists of an update to
each matrix entry based on the values of each of the
neighbors of the entry in a 4-point stencil. In particular, the
Jacobi 2D main loop is as follows:

1. Loop until convergence
2. For all matrix entries Ai;j

3. Ai;j 1
4 ðAi;j þAiþ1;j þAi�1;j þAi;jþ1 þAi;j�1Þ

4. Compute local error

Jacobi 2D is a data-parallel program, so the key to
performance is the distribution of data to processors. The
Jacobi 2D AppLeS divides the data matrix into strips whose
widths correspond to the predicted capacity of each target
computing resources. The performance model for Jacobi is:

81 � i � p Ti ¼ Areai �Operi �AvailCPUi þ Ci;

where p is the number of processors in the target resource
set, Areai is the size of the strip allocated to processor Pi,
Operi is the dedicated execution time to compute one
matrix entry, AvailCPUi is a prediction of the percentage of
available CPU for processor i as provided by the NWS, and
Ci is a prediction of the communication time between
processor Pi and its neighbor(s) as provided by the NWS.

A schedule can then be computed from this perfor-
mance model by solving the time-balancing equations:
T1 ¼ T2 ¼ . . . ¼ Tp, for all unknown Areai. These equa-
tions ensure that all processors are synchronized at the
end of each iteration, thereby minimizing idle time.
Simple memory constraints and the requirement that all
Areai must be positive are used to filter infeasible
schedules.

Fig. 3 shows application execution times obtained on a
nondedicated network of workstations spanning machines
in the Computer Science and Engineering Department
(CSE) and the San Diego Supercomputer Center (SDSC) at
UCSD. We ran the Jacobi 2D application for increasing
problem sizes. First, we observe that our simplistic model
accurately predicts execution performance in a contended
environment. The graph also plots results for application
executions with a uniform, compile-time partitioning of
the application (what a user might do in practice). The
main observation is that adaptive runtime scheduling
outperforms compile-time scheduling. An interesting
phenomenon is the spike that occurred during the
experiments for problem size 1; 900� 1; 900. The spike
occurred when a gateway on the platform went down.
Using the NWS, the Jacobi 2D AppLeS perceives the
gateway to be unacceptably slow and assigns strips to
CSE or SDSC, but not both, whereas it was using
machines at both sides before the failure. The uniform
compile-time partitioning, because it did not use dynamic
parameterizations of available load and bandwidth,
suffered a large performance hit.

3.3 Scheduling Generation and Complib
Key to the AppLeS approach is the ability to generate a
schedule that not only considers predicted expected
resource performance, but also the variation in that
performance. A resource with a large expected performance
that also exhibits a wide performance variation might be
“worth” less to an application than one with a lower but
more predictable performance profile.

We exploited this circumstance to build an AppLeS for
Complib [25]. Complib is a computational biology applica-
tion that compares a library of “unknown” sequences
against a database of “known” sequences using the FASTA
scoring method. Complib is representative of a large and
increasingly popular class of applications.

An obvious approach is to implement a distributed
version of Complib with the well-known master/worker
programming model: The master dispatches work in fixed-
size work-units to workers in a greedy fashion. This is
typically called self-scheduling [26] as it naturally balances
the workload. Overhead is incurred each time the master
sends work to a worker and each time a worker sends

BERMAN ET AL.: ADAPTIVE COMPUTING ON THE GRID USING APPLES 3

Fig. 2. Simple SARA experiments at Supercomputing ’99. Data transfers

from each site every three minutes during three hours at the conference.

results to the master. This overhead can be reduced by
enlarging the size of the work-unit, but this comes at the
cost of possible load imbalance since faster workers may
wait for slower ones at the end of application execution. A
number of approaches have been proposed to dynamically
decrease work-unit sizes throughout application execution
in order to mitigate overhead and load imbalance [27], [28].

Alternatively, the source and target sequence libraries
can be partitioned among the available processors before
execution begins. This is the static partitioning approach that
was used in the Jacobi 2D example in the previous section.
This approach leads to minimal overhead. However, if
exact execution times for each partition cannot be predicted,
slower processors may be assigned too much work or faster
ones too little, causing potentially high load imbalance.

To combine the benefits provided by both self-schedul-
ing and static partitioning, the AppLeS agent for Complib
uses predictions of processor speed and network perfor-
mance, as well as estimates of the uncertainty in these
predictions, to compute the dependable performance avail-
able to the application. To do so, it consults the NWS [23],
[24] to obtain up-to-date predictions of future performance
and the prediction error associated with each prediction.
Using a multiplicative factor of the error, it then computes a
minimum predicted performance level that each resource is

likely to exceed ([10] describes the calculation of depend-
able performance more completely).

When the AppleS-enabled Complib application is exe-
cuted, the agent first uses the dependable performance to
partition one portion of the two-dimensional score array
statically, before execution begins, in proportion to the
relative dependable computational powers of the proces-
sors that are available. The remaining work is self-
scheduled during execution. Fig. 4 depicts this scheduling
technique. In effect, the agent automatically tunes each
execution based on point-valued predictions of perfor-
mance and dynamically generated prediction errors.

Fig. 5 compares the average execution times over 30
back-to-back executions of Complib on three different
problem sizes. The small, medium, and large problem sizes
compared 20 unknown sequences to libraries of 10,000,
32,000, and 120,000 known sequences, respectively. All
experiments used a heterogeneous pool of nondedicated
machines: two four-processor Sun Enterprise servers, six
stand-alone Sun workstations of various speeds, and a 12-
processor Sun SMP located at SDSC, UCSD, and the SAIC
corporation in Arlington, Virginia.

From Fig. 5, it is clear that the AppLeS agent achieves
significantly better execution times as the problem size

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

Fig. 4. Dependable performance is used to partition as much of the

workload as possible while the remainder is self-scheduled.

Fig. 3. Correlation of Jacobi 2D performance model and Jacobi 2D execution performance.

Fig. 5. AppLeS partitioning/self-scheduling, AppLeS partitioning only,

customized, hand-tuned self-scheduling.

scales. More surprisingly, the original designers of Complib
had developed a specially tuned implementation of self-
scheduling (the third bar in each comparison) for the
application. The AppLeS agent was able to outperform this
“hand-tuned” scheduler by more than a factor of 2.5.

3.4 Schedule Adaptation and MCell
Our scheduling work with the MCell application is a good
example of how scheduling decisions can be adaptively
refined throughout application execution with an AppLeS
agent. MCell is a computational neuroscience application
that studies biochemical interactions within living cells at
the molecular level [29], [30]. MCell experiments are
independent of one another; however, large input files are
often shared by whole subsets of experiments and must be
staged in order for the simulation to execute efficiently. This
is depicted in Fig. 6. In addition, large numbers of
moderately sized output files (e.g., totaling hundreds of
Gigabytes) must also be iteratively postprocessed.

MCell executions can span several hours/days as MCell
researchers scale simulations to tens or hundreds of
thousands of tasks. Therefore, it is necessary to perform
schedule adaptation throughout application execution in
order to tolerate changes in resource availabilities.

The problem of scheduling sets of independent tasks
onto heterogeneous sets of processors is NP-hard [31] and
substantial research work has been devoted to design
suitable heuristics. The self-scheduling approach [28], [27],
[31], which we discussed in Section 3.3, is inherently
adaptive. Its main disadvantage is that no planning is
performed because of the greedy scheduling approach. In
particular, in the case of MCell, self-scheduling does not
generally lead to good reuse of shared input files. An
alternative is to use list-scheduling heuristics [32], [33]. In our
work with MCell, we extended these heuristics to take into
account data transfer costs and data reuse. Then, using
simulation, we compared several common heuristics: Min-
min, Max-min, and Sufferage [33]. We also developed a new
heuristic, XSufferage, which extends the sufferage heuristics
to take advantage of computational environments with
storage devices that can be shared by subsets of the
computational resources. We found that XSufferage out-
performs competing heuristics on average and that, in
general, list-scheduling outperforms self-scheduling for an
application such as MCell (see [34]).

We also found that the list-scheduling approach is
sensitive to performance prediction errors. This is clearly
a problem for long-running applications as performance
predictions performed at the onset of the application do not
hold throughout execution. Note that the self-scheduling
approach does not make use of performance predictions at
all. We implemented a version of our list-scheduling
algorithm in which the schedule is recomputed periodically

(at so-called scheduling events). In simulation, we saw that
adaptation makes it possible for list-scheduling algorithms
to tolerate performance prediction errors and, overall,
outperform the self-scheduling approach. This is an im-
portant result: Via schedule adaptation, it is possible to use
sophisticated scheduling heuristics for Grid environments
in which resource availabilities change over time. We
further validated this result for MCell on a real testbed.

In [15], we compared the XSufferage and a self-
scheduling workqueue algorithms for an MCell simulation
consisting of 1,200 experiments and sharing input files
ranging from one to 100 MBs. The testbed consisted of
clusters of workstations at UCSD (eight hosts), UTK
(16 hosts), and TITECH (32 hosts, Japan). The execution
times of the MCell simulation were compared under four
different data location scenarios. In all scenarios, all input
data is available in local storage at the Japanese site.
Average execution times over 35 repeated experiments are
shown in Fig. 7, including error bars. The experiments
demonstrate that when file transfer time is not an issue, as
in scenario (a) where all files staged everywhere, that
workqueue and the predictive heuristic both perform well.
Scenarios (b), (c), and (d) correspond to situations in which
fewer files are replicated. In scenario (d), input files are only
available in Japan. One can see that, as file staging becomes
more crucial, XSufferage performs better than self-schedul-
ing as it take into consideration the location of relevant data.

4 FROM CUSTOMIZED APPLES AGENTS TO

REUSABLE SOFTWARE ENVIRONMENTS

Over the years of the AppLeS project, we have worked
with roughly a dozen disciplinary applications [2], [10],
[11], [12], [13], [14], [15], [16], [17], [4], [18]. During the
course of the AppLeS project, we have often been
approached by application developers asking for AppLeS
code so that they could enhance their own application.
However, AppLeS agents are integrated pieces of soft-
ware in which the application code and the agent are
combined and not easily separated; in particular, it is
difficult to adapt an AppLeS application to create a
different AppLeS application.

BERMAN ET AL.: ADAPTIVE COMPUTING ON THE GRID USING APPLES 5

Fig. 6. Overall structure of a distributed MCell application: Input to

simulations are potentially large files that encode cellular configuration

and environmental information. These input files can be shared by

multiple simulations.

Fig. 7. Experiments comparing application execution time with XSuffer-
age and workqueue scheduling in four scenarios: (a) all files prestaged
everywhere, (b) 100 MByte and two 20 MByte files also prestaged in
Tennessee, (c) 100 MByte files prestaged in California, and (d) no
prestaged files.

To ease this programming burden, we developed AppLeS
Templates that embody common characteristics from various
similar (but not identical) AppLeS-enabled applications.
Whereas an AppLeS application integrates an adaptive
scheduling agent with the application to form a new, self-
scheduling adaptive application, an AppLeS template is a
software framework developed so that an application
component can be easily “inserted” in modular form into
the template to form a new self-scheduling application.
Each AppLeS template is developed to host a structurally
similar class of applications. To date, we have developed
two AppLeS templates—APST (AppLeS Parameter Sweep
Template) [35], [15], which targets parameter sweep
applications, and AMWAT (AppLeS Master-Worker Appli-
cation Template) [36], which targets master/worker appli-
cations. In addition, we have developed a supercomputer
AppLeS (SA) [13], [37] for scheduling moldable jobs on
space-shared parallel supercomputers. We describe these
three projects in what follows.

4.1 APST
The MCell application discussed in Section 3.4 is represen-
tative of an entire class of applications: Parameter Sweep
Applications (PSAs). These applications are structured as
sets of computational tasks that are mostly independent:
There are few task synchronization requirements or data
dependencies among tasks. In spite of its simplicity, this
application model arises in many fields of science and
engineering, including bioinformatics [38], [39], [40], parti-
cle physics [41], [42], discrete-event simulation [43], [44],
computer graphics [45], and in many areas of biology [46],
[47], [29]. APST is a Grid application execution environ-
ments targeted to PSAs.

PSAs are commonly executed on a network of work-
stations. Indeed, it is straightforward for users to launch
several independent jobs on those platforms, for instance,
via ad hoc scripts. However, many users would like to scale
up their PSAs and benefit from the vast numbers of
resources available in Grid platforms. Fortunately, PSAs
are not tightly coupled as tasks do not have stringent
synchronization requirements. Therefore, they can tolerate
high network latencies such as the ones expected on wide-
area networks. In addition, they are amenable to straight-
forward fault tolerance mechanisms as tasks can be
restarted from scratch after a failure. The ability to apply
widely distributed resources to PSAs has been recognized
in the Internet computing community (e.g., SETI@home
[48]). There are two main challenges for enabling PSAs at
such a wide scale: making application execution easy for the
users and achieving high performance. APST addresses
these two challenges by providing transparent deployment
and automatic scheduling of both data and computation.

When designing and implementing APST, the focus was
on the following basic principles and goals:

Ubiquitous Deployment: APST users should be able to
deploy their applications on as many resources as
possible. Therefore, APST supports a variety of middle-
ware services for discovering, using, and monitoring
storage, compute, and network resources.

Opportunistic Execution: Another principle behind APST
is that no specific service is required. For instance, if
services for resource monitoring are deployed and
available to the user, then they can be used by a
scheduler within APST for making more informed
scheduling decisions. However, if no such service is
available, APST will still function, but will probably
achieve lower performance.

Simple User Interface: APST uses a simple, XML-based
interface that can be used from the command-line or
from scripts. This interface can be easily integrated with
more sophisticated interfaces in other Grid projects [49],
[50], [51].

Resilience: Grid resources are shared and federated and are
therefore prone to failures and downtimes. APST
implements simple fault-detection restart mechanisms
for application tasks. To prevent crashes of APST itself,
the software uses a checkpointing mechanism to easily
recover with minimal loss for the application.

4.1.1 The APST Software
The APST software runs as two distinct processes: a
daemon and a client. The daemon is in charge of deploying
and monitoring applications. The client is essentially a
console that can be used periodically, either interactively or
from scripts. The user can invoke the client to interact with
the daemon to submit requests for computation and check
on application progress.

Fig. 8 shows the architecture of the APST software. The
computing platform consists of storage, compute, and
network resources depicted at the bottom of the figure.
Those resources are accessible via deployed middleware
services (e.g., Grid services as shown on the figure). The
central component of the daemon is a scheduler, which
makes all decisions regarding the allocation of resources to
application tasks and data. To implement its decisions, the
scheduler uses a data manager and a compute manager. Both
components use middleware services to launch and
monitor data transfers and computations. In order to make
decisions about resource allocation, the scheduler needs
information about resource performance. As shown in the
figure, the scheduler gathers information from three
sources. The data manager and the compute manager both
keep records of past resource performance and provide the
scheduler with that historical information. The third source,
the metadata manager, uses information services to actively
obtain published information about available resources
(e.g., CPU speed information from MDS [52]). A predictor,
not shown on the figure, compiles information from those

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

Fig. 8. Architecture of the APST software.

three sources and computes forecasts, using techniques
from NWS [23]. Those forecasts are then used by APST’s
scheduling algorithms. The cycle of control and data
between the scheduler and the three managers is key for
adaptive scheduling of PSAs onto Grid platforms. The
adaptive scheduling strategies used by APST are inherited
from our work with MCell as described in Section 3.4.

The current APST implementation can make use of a
number of middleware services and standard mechanisms
to deploy applications. We provide a brief description of
those capabilities.

Launching Application tasks: APST can launch application
tasks on the local host using fork. Remote hosts can be
accessed via ssh, Globus GRAM [53], and NetSolve [7].
The ssh mechanism allows for ssh-tunneling in order to
go through firewalls and to private networks. APST
inherits the security and authentication mechanisms
available from those services (e.g., GSI [54]), if any.
APST can launch applications directly on interactive
resources and can start jobs via schedulers such as PBS
[55], LoadLeveler [56], and Condor [57].

Moving and Storing Application Data: APST can read,
copy, transfer, and store application data among storage
resources with the following mechanisms. It can use cp

to copy data between the user’s local host to storage
resources that are on the same Network File System; data
can also be used in place. APST can also use scp, FTP,
GASS [58], GridFTP [59], and SRB [60]. APST inherits
any security mechanisms provided by those services.

Discovering and Monitoring Resources: APST can obtain
static and dynamic information from services such as
MDS [52] and NWS [23]. APST also learns about
available resources by keeping track of their past
performance when computing application tasks or
transferring application data.

A number of research articles describing the APST work
have been published: Casanova et al. [34] presents an
evaluation of APST’s scheduling heuristics, Casanova et al.
[15] contains experimental results obtained on a Grid
platform spanning clusters in Japan, California, and
Tennessee, Casanova et al. [61] describes the use of APST
specifically for a computational neuroscience application,
and Casanova and Berman [62] discusses the latest APST
implementation as well as usability issues. APST is related
to other Grid projects such as ILAB [50], Nimrod/G [51],
and Condor [57], which also provide mechanisms for
running PSAs and, more generally, to projects in industry
[63], [64], [65] that aim at deploying a large number of jobs
on widely distributed resources.

4.1.2 APST Usage
APST started as a research prototype for exploring adaptive
scheduling of PSAs on the Grid platform. Since then, it has
evolved into a usable software tool that is gaining
popularity in several user communities. The first applica-
tion to use APST in production was MCell. Since then,
APST has been used for computer graphics applications
[45], discrete event simulations [43], [44], and bioinformatics
applications [40], [38], [39]. There is growing interest in the
bioinformatics community as biological sequence matching
applications all fit under the PSA model.

A striking realization is that, at this stage of Grid
computing, users are more concerned with usability than
with performance. Many disciplinary scientists are still
running their applications on single workstations. It was
surprising to realize that, even for parallel applications as
simple as PSAs, there are still many hurdles for users to
overcome. APST provides a good solution because it does

not require modification of the application, because it
requires only a minimal understanding of XML, and
because it can be used immediately with ubiquitous
mechanisms (e.g., ssh and scp). In addition, users can easily
and progressively transition to larger scale platforms on
which more sophisticated Grid services are required.

4.2 AMWAT
While APST targets large-scale parameter sweep applica-
tions with potential data locality issues, the AppLeS
Master-Worker Application Template, or AMWAT, targets
deployment of small and medium-scale Master-Worker
(MW) applications. Another difference between APST and
AMWAT is that AMWAT provides an API for users to
use when writing their applications, whereas APST
deploys existing applications without any modification
to their code. MW applications traditionally have a single
master process which controls the flow of computation
that is performed on one or more remote worker
processes. An MW organization is one of the most
commonly used approaches for parallelizing computa-
tions and is particularly well-suited for problems which
can be easily subdivided into independent tasks for
computation on distributed resources such as those
provided by Grid environments.

The focus of AMWAT is to simultaneously address three
problems in developing and deploying MW applications for
Grid environments: 1) reducing the basic costs of develop-
ing Grid codes, 2) ensuring ready portability to many
different platforms, and 3) providing scheduling capabil-
ities which can deliver consistently good performance
under a wide variety of conditions for MW applications.
AMWAT accomplishes these goals by providing much of
the functionality required to build MW applications in the
form of portable and reusable modules; thereby allowing
application developers to concentrate their efforts on
problem-specific details. Fig. 9 shows the basic organization
of the AMWAT application framework.

Application-specific functions are provided by devel-
opers through a set of 15 application activity functions
specified in the Application Template module shown in Fig. 9.
Application portability is provided by implementing
common interfaces to various Grid services such as
interprocess communication and process invocation in the
Portable Services module shown in Fig. 9. As an example, a
common communication interface provides flexible access
to established communication methods such as Unix-style
sockets, System V IPC shared memory, PVM [8], and MPI
[9]. Support for delivering consistent application perfor-
mance is provided by both general and specialized MW
scheduling functions contained in the Scheduling module of
Fig. 9. Additional details for each of the AMWAT modules
can be found in [36]. AMWAT is strongly related to the
Condor Master-Worker project [66], [67] which also

BERMAN ET AL.: ADAPTIVE COMPUTING ON THE GRID USING APPLES 7

Fig. 9. Components of the AMWAT application framework.

investigates scheduling issues for master/worker computa-
tion on Grid platforms. A thorough discussion of related
work can be found in [36].

Unique to the AMWAT scheduling approach is the
attention given to addressing performance bottlenecks
caused by the runtime interaction of application demands
and deliverable resource capabilities. As part of the work in
creating AMWAT, we developed a work-flow model of
MW application performance and applied this model to
derive an approach for selecting performance-efficient hosts
for both the master and worker processes in a MW
application [68]. This approach accounts for the effects of
both computation and communication performance con-
straints on MW performance in dynamic heterogeneous
environments.

We have also investigated the role of work distribution
strategies in allowing MW applications to cope with
degrees of variability in both application characteristics
and resource behavior [36]. Experimental results showed
that no single strategy performed best under different
environmental conditions, even when running the same
application. As an example, Fig. 10 shows observed effects
on execution time due to both the choice of work
distribution strategy used and the granularity of work
being distributed for the Povray ray-tracing program,
running in a wide-area network environment connecting
workstations at UCSD and UTK. In addition to a simple
one-time fixed allocation (FIXED) strategy, other tested
work distribution strategies include: Self Scheduling (SS)
[69], Fixed Size Chunking (FSC) [70], Guided Self Schedul-
ing (GSS) [71], Trapezoidal Self Scheduling (TSS) [72], and
Factoring (FAC2) [73]. FIXED, SS, and FSC are examples of
allocation strategies which apply the same allocation block
sizes throughout an application run, while GSS, TSS, and
FAC2 are examples of strategies which utilize decreasing
block sizes as an application progresses. Each strategy
differs from the other strategies in the manner by which
initial and subsequent block sizes are determined. The
AMWAT Scheduling module has been designed to provide
a selectable choice of work distribution strategies to allow

MW applications developed with AMWAT increased
flexibility in adapting performance in response to specific
conditions encountered.

AMWAT has been ported to a variety of computing
platforms, including workstations running Linux, Sun
Solaris, IBM AIX, SGI IRIX, and HP HPUX operating
systems, as well as high-performance supercomputers such
as the Cray T3E and IBM Blue Horizon located at SDSC, and
tested with a number of applications [74], [75], [76], [12].

4.3 SA
While APST and AMWAT target Grid environments,
Supercomputer AppleS (SA) targets space-shared supercom-
puter environments [77], [78], [37], showing that application
level scheduling can be useful in general for user-directed
scheduling. SA is a generic AppLeS which promotes the
performance of moldable jobs (i.e., jobs that can be executed
with any of a collection of possible partition sizes) in a
batch-scheduled, space-shared, back-filling environment.
Such environments are common in production super-
computer centers and include MPPs scheduled by EASY
[79], the Maui Scheduler [80], and LSF [81].

SA chooses which partition size to use for submitting a
moldable job request. This decision is important because it
affects the job’s turn-around time (the time elapsed between
the job’s submission and its completion). Sometimes it is
better to use a small request which is going to execute
longer, but does not wait too much in the job queue. Other
times, a large request delivers the best turn-around time
(when the queue is short, for example).

The user provides SA with a set of possible partition
sizes that can be used to submit a given moldable job. SA
uses simulations to estimate the turn-around time of each
potential request based on the current state of the super-
computer and then forwards to the supercomputer the
request with the smallest expected turn-around time.

SA does not always select the best request because the
execution times of the jobs already in the system are not
known (request times are used as estimates) and future

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

Fig. 10. Effects of work distribution strategies on Povray performance in a WAN environment.

arrivals can affect jobs already in the system. However, SA
chooses close to an optimal request for most jobs and its
pick is generally considerably better than the user’s choice.
In order to quantify the improvement due to the use of SA,
we compare the turn-around time obtained by SA’s choice
against the turn-around time attained by the user’s choice
and also against the best turn-around time among all
choices SA had available to choose from. We used four
supercomputer workload logs in our experiments [77]. In
each experiment, a job is randomly chosen and subjected to
a model that generates alternative requests for the job [82].
The workload is then simulated 1) using the users request to
submitted the job, 2) letting SA select which request to use,
and 3) using all possible requests, which enables us to
determine the best request. This experiment was repeated
360,000 times. Since job execution time and turn-around
time are so widely distributed in supercomputers [83], we
chose not to use summarizing statistics (like the mean) to
compare results. Instead, we use the whole distribution of the
relative turn-around times to gauge the performance of SA.
Relative turn-around times depict the turn-around time of
SA and the best request as a fraction of the turn-around
time of the users choice. More precisely, the relative turn
around time of SA, relttSA, is given by relttSA ¼ ttSA=ttuser.
Similarly, the best relative turn-around time is given by
relttbest ¼ ttbest=ttuser. Fig. 11 shows cumulative distribu-
tions of the relative turn-around times of SA and the ”best”
request [77]. Note that, due to the definition of relative turn-
around time, values smaller than 1 indicate that SA (or best
request) had smaller turn-around times than the users
request. Values greater than 1 indicate that the users choice
performed better. Values equal to 1 show that SA (or best
request) achieved exactly the same turn-around time.
Therefore, as can be seen in Fig. 11, SA improves the
performance of 45.8 percent of the jobs, sometimes
dramatically. 45.3 percent of the jobs do not experience
any performance increase. This is due to the fact that, in
these simulations, SA was not offered with many choices for
partition size, conservatively modeling observed behaviors
[77], [82]. For 8.8 percent of the jobs, the user choice for the
request resulted in better turn-around time than the request
selected by SA. More details about SA and these experi-
ments can be found in [77], [78], [37].

5 RELATED WORK

A number of research efforts target the development of
application schedulers for dynamic, heterogeneous com-
puting environments. It is often difficult to make head-to-
head comparisons between distinct efforts as schedulers are
developed for particular system environments, language
representations, and application domains. In this section,
we review a number of successful projects [84], [85], [86],
[87], [88], [89] and highlight differences with the AppLeS
approach in terms of computing environment, program model,
performance model, and scheduling strategy.

Several projects provide a custom runtime system with
features that can be used directly by a scheduler. For
instance, MARS [84], [90] and Dome [89] both provide
runtime systems that support task checkpointing and
migration. The schedulers use migration to achieve load-
balancing. By contrast, AppLeS does not provide a runtime
environment. Instead, it uses what computing infrastruc-
ture is available to the user (e.g., Globus [5], Legion [6],
NetSolve [7], MPI [9], etc.) along with the NWS [23] for
resource monitoring and performance prediction. These
systems usually do not offer all the capabilities that could
be provided by a custom runtime system designed with
load-balancing in mind (e.g., task migration in Dome and
MARS). However, AppLeS capitalizes on emerging stan-
dards (e.g., Globus) and is directly usable by users who are
already familiar with existing environments.

Many projects impose structural requirements for the
application. For instance, MARS [84] targets SPMD program
that consist of phases within which the execution profile
remains the same over several runs. For each phase, one can
then find an optimal task-to-processor mapping. VDCE [85]
and SEA [86] target applications structured as dependency
graphs with coarse-grained tasks (calls to functions from
mathematical libraries in VDCE, data-flow-style program-
ming in SEA). IOS [87] targets real-time, fine-grained,
iterative, image recognition applications that are also
structured as dependency graphs. Dome [89] and SPP(X)
[88] provide a language abstraction for the application

BERMAN ET AL.: ADAPTIVE COMPUTING ON THE GRID USING APPLES 9

Fig. 11. Distribution of relative turn-around time for SA and the best request.

program, which is compiled into a low-level task depen-
dency graph representation automatically. Dome imposes
an SPMD structure, whereas SPP(X) uses the traditional
task dependency graph model. AppLeS focuses on coarse-
grain applications. The program model is that of commu-
nicating tasks that are described in terms of their resource
requirements. Originally, AppLeS did not impose any
restriction on the programming model and every instance
of AppLeS used its own model. This allowed the AppLeS
methodology to be applicable to many application domains
in various computing environment settings but limited
possible reuse for other applications. The templates pre-
sented in Section 4 provide software for several classes of
applications to readily benefit from the AppLeS methodol-
ogy.

A performance model provides an abstraction of the
behavior of an application on an underlying set of hardware
resources. The common approach is to parameterize the
performance model by both static and dynamic information
concerning the available resources. At one end of the
spectrum are performance models that are derived from the
program model. SPP(X) [88] and VDCE [85] derive their
performance models directly from task dependency graphs.
MARS [84] uses a cost model between each program phase
to assess whether it is worth checkpointing and migrating a
subset of the application tasks. The cost model is based on
statistics of previous executions of the application from
which MARS extracts characteristic load distribution and
communication patterns. Dome [89] achieves load balan-
cing thanks to a sequence of short-term adjustments of the
data distribution among the processors. These adjustments
are based on the observed “computational rate” of each
processor. IOS [87] associates a set of algorithms to each
fine-grain task in the program graph and evaluates
prestored offline mappings of the graph onto the resources.
SEA [86] uses its data-flow-style program graph to
determine which tasks are ready for execution. By contrast,
AppLeS assumes that the performance model is provided by
the user. Current AppLeS applications rely on structural
performance models [91], which compose performance
activities into a prediction of application performance.

Almost all the aforementioned projects do not provide
much latitude for user-provided scheduling policies or
performance criteria: Minimization of execution time is the
only goal. Scheduling in MARS [84] and Dome [89] is done
with iterative task/data redistributions decisions. VDCE
[85] uses a list scheduling algorithm, whereas SEA [86] uses
an expert system that uses the data-flow representation of
the program to schedule tasks on the fly. IOS [87] uses a
novel approach that uses offline genetic algorithms to
precompute schedules for different program parameters.
Some of these schedules are then selected during applica-
tion execution. The default AppLeS scheduling policy is to
perform resource selection as an initial step and to choose
the best schedule among a set of candidates based on the
user’s performance criteria. Since AppLeS uses a very
general program and performance model, there is no single
AppLeS scheduling algorithm, but rather a series of instantia-
tions of the AppLeS paradigm. Some of these instantiations
have been reviewed in Section 3. AppLeS is therefore
applicable to a wide range of applications with various
requirements and performance metrics and AppLeS sche-
dulers can use arbitrary scheduling algorithms that are best

for their target domain. This was successfully demonstrated
in the AppLeS template effort.

Finally, the GrADS project [92] has focused on develop-
ing a comprehensive and adaptive Grid programming
environment. The GrADS software, GrADSoft, is based on
many of the AppLeS principles and generalizes the AppLeS
methodology.

6 ONGOING WORK AND NEW DIRECTIONS

The AppLeS project has demonstrated that taking into
account both application and platform-specific information
is key to achieving performance for distributed applications
inmodern computing environments such as theGrid [1]. Our
current and future works are on two fronts: 1) disseminate
and deploy AppLeS methodology and technology and
2) extendAppLeS methodology to new types of applications
and computing platforms.

In terms of dissemination and deployment, our first step
was to develop the AppLeS templates described in Section 4.
We are currently disseminating those templates in several
user communities for different types of applications and
computing environments. The feedback that we obtain from
these users is invaluable. It allows us to better understand
the current needs of different scientific communities and to
steer AppLeS template software development efforts ade-
quately. Software distributions and documentations are
available for APST and AMWAT at [93]. AppLeS metho-
dology is also being integrated into software from the
GrADS [92] project. This project is a multi-institution effort
to provide a software development environment for next
generation Grid applications. In collaboration with re-
searchers at Rice, we are developing a software architecture
to facilitate information flow and resource negotiation
among applications, libraries, compilers, schedulers, and
the runtime system. In this context, the AppLeS approach is
used for application scheduling and rescheduling.

We are extending the AppLeS approach for three several
new classes of application. First, as part of the Virtual
Instrument project [94], we are exploring application sche-
duling in computational steering scenarios. This project is a
multi-institution collaboration and is focused on providing a
software environment for the MCell application (see Section
3.4) that enables computational steering. In this project, not
only does the environment exhibit dynamic behaviors, but
the user can steer the application as it runs in order to change
its overall computational goals. We are currently studying
how this new kind of dynamic phenomenon impacts
application-level scheduling and we are determining which
scheduling strategies will be applicable [95].

Second, we are exploring application tunability in con-
junction with application-level scheduling. Tunability al-
lows users to express tradeoffs between several aspects of
an application execution. Typical tradeoffs are between
“quality” of application output and resource usage and we
are studying tunability in the context of online parallel
tomography [18]. We are extending the AppLeS methodol-
ogy to assist the user in choosing an appropriate trade-off.

Third, we are investigating application-level scheduling
for nondeterministic applications. In particular, we are
considering applications that simulate the behavior of large
populations that consist of well-understood entities (e.g.,
ecology or biology simulations). These applications exhibit

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

emergent behaviors throughout execution and it is very
difficult to define a scheduling strategy that will be effective
throughout an entire run. As a first approach, we are
developing adaptive scheduling techniques that are based
on evolutionary algorithms and on rescheduling. In pre-
vious AppLeS work, we mostly focused on accounting for
dynamic behavior of the computing environment. By
contrast, these three extensions to the AppLeS methodology
all address some dynamic aspect of the application. Current
trends indicate that next generation Grid applications will
be increasingly dynamic and tunable and we expect our
current work to be critical for addressing upcoming Grid
computing challenges.

We are also studying a class of computing platforms that
has recently become popular: peer-to-peer and global comput-
ing environments. These environments have tremendous
potential as they gather thousands of otherwise idle PCs
world-wide. Even though resources are abundant, they are
volatile. Furthermore, little information is available con-
cerning resource behaviors. As a result, only embarrass-
ingly parallel applications (e.g., SETI@home [48]) have been
targeted to the peer-to-peer platform. Some of our current
work is investigating whether it is possible to execute
applications with a more complex structure on that plat-
form [96]. We are targeting bioinformatics applications and,
more specifically, gene sequence-matching algorithms that
can be implemented in parallel with data dependencies.
This departs from original AppLeS work on the Grid as
scheduling must be done with little information concerning
the available resources. Recently published work [97]
identifies similarities and differences between Grid com-
puting and peer-to-peer computing. The current trend is to
provide some unifying framework for wide-area computing
and our work on extending AppLeS methodology to peer-
to-peer computing will be eminently applicable in that
context.

7 SUMMARY

In this article, we have described the AppLeS (Application
Level Scheduling) project. The project focuses on providing
methodology, application-development software, and ap-
plication execution environments for adaptively scheduling
applications in dynamic, heterogeneous, multiuser Grid
platforms. In Section 2, we described the general AppLeS
methodology and highlighted the six main stages of our
approach to application-level adaptive scheduling. In
Section 3, we described in details each AppLeS functional-
ities and provided explanatory examples from our work
with actual Grid applications. This corresponds to the first
generation AppLeS work in which we defined and validated
our methodology. In order to deploy that methodology as
part of reusable software tools, we designed and imple-
mented generic AppLeS templates. Those templates were
described in Section 4. The APST and AMWAT templates
(Sections 4.1 and 4.2) each target a specific class of
applications and are currently being used by various
application groups. The SA template (Section 4.3) can be
used as part of supercomputer schedulers for better
resource usage. We compared the AppLeS methodology
to related work in Section 5. As seen in Section 6, our new
directions extend the AppLeS methodology to new classes
of applications and platforms that will be critical for next
generation Grid computing.

ACKNOWLEDGMENTS

The authors would like to acknowledge the following people

for their help and support throughout the different stages of

the AppLeS project: T. Bartol, A. Downey, M. Ellisman,

M. Farrellee, G. Kremenek, A. Legrand, S. Matsuoka,

R. Moore, H. Nakada, O. Sievert, M. Swany, A. Takefusa,

N. Williams, and the UCSD/CSE and SDSC support staff.

They also wish to thank the reviewers for their insightful

comments which have greatly contributed to improving this

article.

REFERENCES

[1] The Grid: Blueprint for a New Computing Infrastructure. I. Foster and
C. Kesselman, eds., San Francisco, Calif.: Morgan Kaufmann
Publishers, 1999.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao,
“Application Level Scheduling on Distributed Heterogeneous
Networks,” Proc. Supercomputing 1996, 1996.

[3] C. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid
Information Services for Distributed Resource Sharing,” Proc. 10th
IEEE Symp. High-Performance Distributed Computing, 2001.

[4] H. Dail, H. Casanova, and F. Berman, “A Decoupled Scheduling
Approach for the GrADS Environment,” Proc. Supercomputing ’02,
Nov. 2002.

[5] I. Foster and K Kesselman, “Globus: A Metacomputing Infra-
structure Toolkit,” Int’l J. Supercomputer Applications, vol. 11, no. 2,
pp. 115-128, 1997.

[6] A. Grimshaw, A. Ferrari, F.C. Knabe, and M. Humphrey, “Wide-
Area Computing: Resource Sharing on a Large Scale,” Computer,
vol. 32, no. 5, pp. 29-37, May 1999.

[7] H. Casanova and J. Dongarra, “NetSolve: A Network Server for
Solving Computational Science Problems,” Int’l J. Supercomputer
Applications and High Performance Computing, vol. 11, no. 3, pp. 212-
223, 1997.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam, PVM: Parallel Virtual Machine. A Users’ Guide andTu-
torial for Networked Parallel Computing. Cambridge, Mass.: MIT
Press, 1994.

[9] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI: The Complete Reference. Cambridge, Mass.: MIT Press, 1996.

[10] N. Spring and R. Wolski, “Application Level Scheduling of Gene
Sequence Comparison on Metacomputers,” Proc. 12th ACM Int’l
Conf. Supercomputing, July 1998.

[11] A. Su, F. Berman, R. Wolski, and M. Mills Strout, “Using AppLeS
to Schedule Simple SARA on the Computational Grid,” Int’l J.
High Performance Computing Applications, vol. 13, no. 3, pp. 253-262,
1999.

[12] S. Smallen, W. Cirne, J. Frey, F. Berman, R. Wolski, M.H. Su, C.
Kesselman, S. Young, and M. Ellisman, “Combining Workstations
and Supercomputers to Support Grid Applications: The Parallel
Tomography Experience,” Proc. Ninth Heterogeneous Computing
Workshop, pp. 241-252, May 2000.

[13] W. Cirne and F. Berman, “Adaptive Selection of Partition Size for
Supercomputer Requests,” Proc. Sixth Workshop Job Scheduling
Strategies for Parallel Processing, May 2000.

[14] H. Dail, G. Obertelli, F. Berman, R. Wolski, and A. Grimshaw,
“Application-Aware Scheduling of a Magnetohydrodynamics
Application in the Legion Metasystem,” Proc. Ninth Heterogeneous
Computing Workshop (HCW ’00), May 2000.

[15] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The
AppLeS Parameter Sweep Template: User-Level Middleware for
the Grid,” Proc. Supercomputing 2000 (SC ’00), Nov. 2000.

[16] J. Schopf and F. Berman, “Stochastic Scheduling,” Proc. Super-
computing 1999, 1999.

[17] J. Schopf and F. Berman, “Using Stochastic Information to Predict
Application Behavior on Contended Resources,” Int’l J. Founda-
tions of Computer Science, vol. 12, no. 3, pp. 341-363, 2001.

[18] S. Smallen, H. Casanova, and F. Berman, “Tunable On-Line
Parallel Tomography,” Proc. Supercomputing ’01, Nov. 2001.

[19] M. Faerman, A. Su, R. Wolski, and F. Berman, “Adaptive
Performance Prediction for Distributed Data-Intensive Applica-
tions,” Proc. Supercomputing ’99, Nov. 1999.

BERMAN ET AL.: ADAPTIVE COMPUTING ON THE GRID USING APPLES 11

[20] Caltech’s synthetic aperture radar atlas project, http://
www.cacr.caltech.edu/\~roy/sara/index.html. year?

[21] Caltech’s digital sky project, http://www.cacr.caltech.edu/
digisky. year?

[22] Microsoft’s terraserver project, http://terraserver.homeadvi
sor.msn.com. year?

[23] R. Wolski, N. Spring, and J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting Service
for Metacomputing,” Future Generation Computer Systems, vol. 15,
nos. 5-6, pp. 757-768, Oct. 1999.

[24] R. Wolski, “Dynamically Forecasting Network Performance Using
the Network Weather Service,” Cluster Computing, vol. 1, pp. 119-
132, Jan. 1998.

[25] A.S. Grimshaw, E.A. West, and W.R. Pearson, “No Pain and
Gain!—Experiences with Mentat on Biological Applications,”
Concurrency: Practice and Experience, vol. 5, no. 4, July 1993.

[26] T. Hagerup, “Allocating Independent Tasks to Parallel Processors:
An Experimental Study,” J. Parallel and Distributed Computing,
vol. 47, pp. 185-197, 1997.

[27] S. Flynn Hummel, J. Schmidt, R.N. Uma, and J. Wein, “Load-
Sharing in Heterogeneous Systems via Weighted Factoring,” Proc.
Eighth Ann. ACM Symp. Parallel Algorithms and Architectures,
pp. 318-328, June 1996.

[28] T. Hagerup, “Allocating Independent Tasks to Parallel Processors:
An Experimental Study,” J. Parallel and Distributed Computing,
vol. 47, pp. 185-197, 1997.

[29] J.R. Stiles, T.M. Bartol, E.E. Salpeter, and M.M. Salpeter, “Monte
Carlo Simulation of Neuromuscular Transmitter Release Using
MCell, a General Simulator of Cellular Physiological Processes,”
Computational Neuroscience, pp. 279-284, 1998.

[30] J.R. Stiles, D. Van Helden, T.M. Bartol, E.E. Salpeter, and M.M.
Salpeter, “Miniature End-Plate Current Rise Times < 100 Micro-
seconds from Improved Dual Recordings Can Be Modeled with
Passive Acetylcholine Diffusion Form a Synaptic Vesicle,” Proc.
Nat’l Academy of Sciences U.S.A., vol. 93, pp. 5745-5752, 1996.

[31] O.H. Ibarra and C.E. Kim, “Heuristic Algorithms for Scheduling
Independent Tasks on Nonindentical Processors,” J. ACM, vol. 24,
no. 2, pp. 280-289, Apr. 1977.

[32] R.D. Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F.
Freund, “A Comparison Study of Static Mapping Heuristics for a
Class of Meta-Tasks on Heterogeneous Computing Systems,”
Proc. Eighth Heterogeneous Computing Workshop (HCW ’99), pp. 15-
29, Apr. 1999.

[33] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R. Freund,
“Dynamic Matching and Scheduling of a Class of Independent
Tasks onto Heterogeneous Computing Systems,” Proc. Eighth
Heterogeneous Computing Workshop (HCW ’99), pp. 30–44 Apr. 1999.

[34] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman,
“Heuristics for Scheduling Parameter Sweep Applications in Grid
Environments,” Proc. Ninth Heterogeneous Computing Workshop
(HCW ’00), pp. 349-363, May 2000.

[35] Apst homepage, http://grail.sdsc.edu/projects/apst. year?
[36] G. Shao, “Adaptive Scheduling of Master/Worker Applications

on Distributed Computational Resources,” Ph.D. thesis, Univ. of
California, San Diego, May 2001.

[37] W. Cirne, “Using Moldability to Improve the Performance of
Supercomputer Jobs,” Ph.D. thesis, Univ. of California, San Diego,
Nov. 2000.

[38] S. Altschul, W. Dish, W. Miller, E. Myers, and D. Lipman, “Basic
Local Alignment Search Tool,” J. Molecular Biology, vol. 215,
pp. 403-410, 1990.

[39] S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman, “Gapped BLAST and PSI-BLAST: A New
Generation of Protein Database Search Programs,” Nucleic Acids
Research, vol. 25, pp. 3389-3402, 1997.

[40] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge Univ. Press, 1998.

[41] J. Basney, M. Livny, and P. Mazzanti, “Harnessing the Capacity of
Computational Grids for High Energy Physics,” Proc. Conf.
Computing in High Energy and Nuclear Physics, 2000.

[42] A. Majumdar, “Parallel Performance Study of Monte-Carlo
Photon Transport Code on Shared-, Distributed-, and Distribu-
ted-Shared-Memory Architectures,” Proc. 14th Parallel and Dis-
tributed Processing Symp., IPDPS ’00, pp. 93-99, May 2000.

[43] H. Casanova, “Simgrid: A Toolkit for the Simulation of Applica-
tion Scheduling,” Proc. IEEE Int’l Symp. Cluster Computing and the
Grid (CCGrid ’01), pp. 430-437, May 2001.

[44] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U.
Nagashima, “Overview of a Performance Evaluation System for
Global Computing Scheduling Algorithms,” Proc. Eighth IEEE Int’l
Symp. High Performance Distributed Computing (HPDC), pp. 97-104,
Aug. 1999.

[45] NPACI Scalable Visualisation Tools Webpage, http://vistools.n
paci.edu. year?

[46] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H.
Weissig, I. Shingyalov, and P. Bourne, “The Protein Data Bank,”
Nucleic Acids Research, vol. 28, no. 1, pp. 235-242, 2000.

[47] A. Natrajan, M. Crowley, N. Wilkins-Diehr, M. Humphrey, A.
Fox, and A. Grimshaw, “Studying Protein Folding on the Grid:
Experiences Using CHARM on NPACI Resources under Legion,”
Proc. 10th IEEE Int’l Symp. High Performance Distributed Computing
(HPDC-10), 2001.

[48] SETI@Home project, http://setiathome.ssl.berkeley.edu. year?
[49] M. Thomas, S. Mock, J. Boisseau, M. Dahan, K. Mueller, and D.

Sutton, “The GridPort Toolkit Architecture for Building Grid
Portals,” Proc. 10th IEEE Int’l Symp. High Performance Distributed
Computing (HPDC-10), Aug. 2001.

[50] M. Yarrow, K. McCann, R. Biswas, and R. Van der Wijngaart, “An
Advanced User Interface Approach for Complex Parameter Study
Process Specification on the Information Power Grid,” Proc. GRID
2000, Dec. 2000.

[51] D. Abramson, J. Giddy, and L. Kotler, “High Performance
Parametric Modeling with Nimrod/G: Killer Application for the
Global Grid?” Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS), pp. 520-528, May 2000.

[52] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid
Information Services for Distributed Resource Sharing,” Proc. 10th
IEEE Symp. High-Performance Distributed Computing, 2001.

[53] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W.
Smith, and S. Tuecke, “A Resource Management Architecture for
Metacomputing Systems,” Proc. IPPS/SPDP ’98 Workshop Job
Scheduling Strategies for Parallel Processing, pp. 62-82, 1998.

[54] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security
Architecture for Computational Grids,” Proc. Fifth ACM Conf.
Computer and Comm. Security, pp. 83-92, 1998.

[55] The Portable Batch System Webpage, http://www.openpbs.com.
year?

[56] IBM LoadLeveler User’s Guide. IBM Corp., 1993.
[57] M. Litzkow, M. Livny, and M. Mutka, “Condor—A Hunter of Idle

Workstations,” Proc. Eighth Int’l Conf. Distributed Computing
Systems, pp. 104-111, June 1988.

[58] I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke, “GASS: A Data
Movement and Access Service for Wide Area Computing
Systems,” Proc. Sixth Workshop I/O in Parallel and Distributed
Systems, May 1999.

[59] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and
S. Tuecke, “GridFTP: Protocol Extension to FTP for the Grid,”
Grid Forum Internet-Draft, Mar. 2001.

[60] The storage resource broker, http://www.npaci.edu/dice/srb,
2002.

[61] H. Casanova, T. Bartol, J. Stiles, and F. Berman, “Distributing
MCell Simulations on the Grid,” Int’l J. High Performance
Computing Applications, vol. 14, no. 3, pp. 243-257, 2001.

[62] H. Casanova and F. Berman, Parameter Sweeps on the Grid with
APST, chapter 33. Wiley Publishers, Inc., 2002.

[63] SunMicrosystemsGrid Engine, http://www.sun.com/gridware/,
year?

[64] Entropia Inc., http://www.entropia.com, entropia, year?
[65] United Device Inc., http://www.ud.com, year?
[66] J. Linderoth, S. Kilkarni, J.-P. Goux, and M. Yoder, “An Enabling

Framework for Master-Worker Applications on the Computa-
tional Grid,” Proc. Ninth IEEE Symp. High Performance Distributed
Computing, pp. 43-50, Aug. 2000.

[67] E. Heymann, M. Senar, E. Luque, and M. Livny, “Adaptive
Scheduling for Master-Worker Applications on the Computational
Grid,” Proc. IEEE/ACM Int’l Workhop Grid Computing (GRID 2000),
Dec. 2000.

[68] G. Shao and R. Wolski, and F. Berman, “Master/Slave Computing
on the Grid,” Proc. Ninth Heterogeneous Computing Workshop, pp. 3-
16, May 2000.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

[69] P. Tang and P.-C. Yew, “Processor Self-Scheduling for Multiple
Nested Parallel Loops,” Proc. 1986 Int’l Conf. Parallel Processing,
pp. 528-535, Aug. 1986.

[70] C.P. Kruskal and A. Weiss, “Allocating Independent Subtasks on
Parallel Processors,” IEEE Trans. Software Eng., vol. 11, no. 10,
pp. 1001-1016, Oct. 1985.

[71] C.D. Polychronopoulos and D.J. Kuck, “Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers,”
IEEE Trans. Computers, vol. 36, no. 12, pp. 1425-1439, Dec. 1987.

[72] T.H. Tzen and L.M. Ni, “Trapezoidal Self-Scheduling: A Practical
Scheme for Parallel Compilers,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 4, no. 1, pp. 87-98, Jan. 1993.

[73] S. Flynn Hummel, J. Schmidt, R.N. Uma, and J. Wein, “Load-
Sharing in Heterogeneous Systems via Weighted Factoring,” Proc.
Eighth Ann. ACM Symp. Parallel Algorithms and Architectures,
pp. 318-328, June 1996.

[74] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L.
Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S.
Schreiber, H.D. Simon, V. Venkatakrishnan, and S.K. Weeratunga,
“The NAS Parallel Benchmarks,” Int’l J. Supercomputer Applica-
tions, vol. 5, no. 3, pp. 63-73, 1991.

[75] “Persistence of Vision Raytracer,” Persistence of Vision Develop-
ment Team, 1999.

[76] L.F. Ten Eyck, J. Mandell, V.A. Roberts, and M.E. Pique,
“Surveying Molecular Interactions with DOT,” Proc. 1995 ACM/
IEEE Supercomputing Conf., pp. 506-517, Dec. 1995.

[77] W. Cirne and F. Berman, “Using Moldability to Improve the
Performance of Supercomputer Jobs,” J. Parallel and Distributed
Computing, vol. 62, no. 10, pp. 1571-1601, 2002.

[78] W. Cirne and F. Berman, “When the Herd Is Smart: The Aggregate
Behavior in the Selection of Job Request,” IEEE Trans. Parallel and
Distributed Systems, vol. 14, no. 2, pp. 181-192, Feb. 2003.

[79] “Extensible Argonne Scheduler System (EASY),”http://info.mc
s.anl.gov/Projects/sp/scheduler/scheduler.html, year?

[80] “Maui Scheduler,” http://supercluster.org/maui/, year?
[81] “Load Sharing Facility (LSF),”http://wwwinfo.cern.ch/pdp/lsf/,

year?
[82] W. Cirne and F. Berman, “A Model for Moldable Supercomputer

Jobs,” Proc. IPDPS 2001—Int’l Parallel and Distributed Processing
Symp., Apr. 2001.

[83] D.G. Feitelson, “Metrics for Parallel Job Scheduling and Their
Convergence,” Job Scheduling Strategies for Parallel Processing,
vol. 2221, pp. 188-206, 2001.

[84] J. Gehring and A. Reinefeld, “MARS—A Framework for Mini-
mising the Job Execution Time in a Metacomputing Environ-
ment,” Future Generation Computer Systems, vol. 12, pp. 87-99, 1996.

[85] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y.
Kim, X. Bing, and B. Ye, “The Software Architecture of a Virtual
Distributed Computing Environment,” Proc. Sixth IEEE High-
Performance and Distributed Computing Conf. (HPDC ’97), pp. 40-49,
1997.

[86] M. Sirbu and D. Marinescu, “A Scheduling Expert Advisor for
Heterogeneous Environments,” Proc. Heterogeneous Computing
Workshop (HCW ’97), pp. 74-87, 1997.

[87] J. Budenske, R. Ramanujan, and H.J. Siegel, “On-Line Use of Off-
Line Derived Mappings for Iterative Automatic Target Recogni-
tion Tasks and a Particular Class of Hardware,” Proc. Hetero-
geneous Computing Workshop (HCW ’97), pp. 96-110, 1997.

[88] P. Au, J. Darlington, M. Ghanem, Y. Guo, H. To, and J. Yang,
“Co-Ordinating Heterogeneous Parallel Computation,” Proc.
Euro-Par ’96, pp. 601-614, 1996.

[89] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and
P. Stephan, “ Dome: Parallel Programming in a Heterogeneous
Multi-User Environment,” Proc. 10th Int’l Parallel Processing Symp.,
pp. 218-224, 1996.

[90] J. Gehring, “Dynamic Program Description as a Basis for Runtime
Optimisation,” Proc. Third Int’l Euro-Par Conf., pp. 958-965, Aug.
1997.

[91] J. Schopf, “Performance Prediction and Scheduling for Parallel
Applications on Multiuser Clusters,” Ph.D. thesis, Univ. of
California, San Diego, Dec. 1998

[92] GrADS project homepage, http://nhse2.cs.rice.edu/grads, year?
[93] Grid research and innotation laboratory homepage, http://

grail.sdsc.edu, year?
[94] Virtual Instrument project, http://gcl.ucsd.edu/vi_itr/, year?

[95] M. Faerman, A. Birnbaum, H. Casanova, and F. Berman,
“Resource Allocation for Steerable Parallel Parameter Searches,”
Proc. Grid Computing Workshop, Nov. 2002.

[96] D. Kondo, H. Casanova, E. Wing, and F. Berman, “Models and
Scheduling Mechanisms for Global Computing Applications,”
Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS), Apr.
2002.

[97] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” Int’l J. High Performance
Computing Applications, 2001.

Francine Berman received the BA degree from
the University of California, Los Angeles, in
1973, the MS degree from the University of
Washington in 1976, and the PhD degree from
the University of Washington in 1979. She is the
director of the San Diego Supercomputer Center
and the National Partnership for Advanced
Computational Infrastructure, a fellow of the
ACM, a professor of computer science and
engineering at the University of California, San

Diego, and founder of the UCSD Grid Laboratory. Over the last two
decades, her research has focused on the development of software,
tools, and models for Parallel and, more recently, Grid Computing
environments. Dr. Berman has served on numerous program commit-
tees, advisory boards, and steering committees and currently serves as
one of the two principal investigators for the US National Science
Foundation’s TeraGrid project and as co-PI on the Extensible Terascale
Facility (ETF) project. She is a member of the IEEE Computer Society.

Richard Wolski received the BS degree in
computer science from the California Polytech-
nic State University at San Luis Obispo, and the
MS and PhD degrees from the University of
California Davis, Lawrence Livermore National
Laboratory (LLNL) campus. He is an assistant
professor of computer science at the University
of California, Santa Barbara. His research
interests include Grid computing, distributed
computing, scheduling, and resource allocation.

In addition to AppLeS, he leads the Network Weather Service project
which focuses on online prediction of resource performance. He has
developed EveryWare—a set of tools for portable Grid programming. He
is also leading the G-commerce project studying computational
economies for the Grid. He is a member of the IEEE.

Henri Casanova received the BS degree from
the Ecole Nationale Supérieure d’Electronique,
d’Informatique et d’Hydraulique de Toulouse,
France, in 1993, the MS from the Université Paul
Sabatier, Toulouse, France, in 1994, and the
PhD degree from the University of Tennessee,
Knoxville, in 1998. He is an adjunct professor of
computer science and engineering at the Uni-
versity of California, San Diego, a research

scientist at the San Diego Supercomputer Center, and the founder and
director of the Grid Research And Development Laboratory (GRAIL) at
UCSD. His research interests are in the area of parallel, distributed,
Grid, and Internet computing, with emphases on modeling, scheduling,
and simulation. He is a member of the IEEE.

BERMAN ET AL.: ADAPTIVE COMPUTING ON THE GRID USING APPLES 13

Walfredo Cirne received the BS and MS
degrees from the Universidade Federal da
Paraiba and the PhD degree from the University
of California, San Diego. He is a professor at the
Universidade Federal de Campina Grande,
Brazil. He has previously worked in machine
learning and computer networks. Now, his
research efforts concentrate in Grid Computing
and Service Availability, areas in which he leads

two research projects. MyGrid (http://www.dsc.ufpb.br/mygrid/) aims to
provide user-level support for light parallel applications running on
computational grids. Smart Alarms (http://www.dsc.ufpb.br/~smart/)
investigates how to determine the root cause of problems in large
electrical transmission networks based on the sequence of alarms
originating from the components of the network.

Holly Dail received the BS degree in physics
and in oceanograpny from the University of
Washington and the MS degree in computer
science from the University of California, San
Diego. She is a research programmer at the San
Diego Supercomputer Center. Her current re-
search interest is in application development
environments for Grid computing. She is a
member of the IEEE Computer Society.

Marcio Faerman received the MS and BS
degrees in electrical engineering from Universi-
dade Federal do Rio de Janeiro. He is a PhD
candidate in the Department of Computer
Science and Engineering of University of Cali-
fornia, San Diego. His research interests include
grid computing, application-level scheduling,
computer networks, performance modeling,
and prediction. He is a student member of the
IEEE and the IEEE Computer Society.

Silvia Figueira received the BS and MS
degrees in computer science from the Federal
University of Rio de Janeiro (UFRJ), Brazil, in
1988 and 1991, respectively, and the PhD
degree in computer science from the University
of California, San Diego, in 1997. She was
involved in research as a member of the
technical staff of NCE/UFRJ (Computing Center
of UFRJ) from 1985 to 1991. Currently, she is an
assistant professor of computer engineering at

Santa Clara University. Her current research interests are in the area of
system support for parallel computation in network of workstations and
Grid environments.

Jim Hayes received the BS degree in informa-
tion and computer science from the University of
California, Irvine, and the MS degree in compu-
ter science from the University of California, San
Diego. He is currently a research programmer at
the San Diego Supercomputer Center. His
particular interest lies in incorporating flexibility
into the design of Grid software and systems to
allow for later modification as requirements
change. His primary projects involve programs
and libraries that speed the process of adapting

computational science codes on Grid resources.

Graziano Obertelli received the Laurea degree
from the Dipartimento di Scienze dell’Informa-
zione at the Università di Milano. He is currently
a research programmer in the Department of
Computer Science at the University of California,
Santa Barbara. His research interests are in the
area of Grid computing.

Jennifer Schopf received the BA degree from
Vassar College and the MS and PhD degrees
from the University of California, San Diego. She
is an assistant computer scientist at the Dis-
tributed Systems Lab, part of the Mathematics
and Computer Science Division at Argonne
National Lab. Her research is in the area of
monitoring, performance prediction, and re-
source scheduling and selection. She is cur-
rently part of the Globus Project and is on the

steering group of the Global Grid Forum as the area codirector for
Scheduling and Resource Management. She is a member of the IEEE
and the IEEE Computer Society.

Gary Shao recieved the BS degree in electrical
engineering and the BS degree in computing
engineering from the University of Missouri-
Columbia in 1982, the MS degree in electrical
engineering from Washington University, St.
Louis in 1992, and the PhD degree in computer
science from the University of California, San
Diego, in 2001. His current research interest are

in Grid computing and network modeling.

Shava Smallen received the BS and MS
degrees from the Department of Computer
Science and Engineering at the University of
California, San Diego, in 1998 and 2001. She is
a research programmer at the San Diego
Supercomputer Center. Her current research
interest is in Grid computing.

Neil Spring received the BS degree in computer
engineering from the University of California, San
Diego in 1997 and the MS degree in computer
science from the University of Washington in
2000. He is a PhD student at the University of
Washington. His research interests include net-
work topology discovery, congestion control,
network performance analysis, distributed oper-

ating systems, adaptive scheduling of distributed applications, and
operating system support for networking.

Alan Su received the BS degree in electrical
engineering and computer science from the
University of California, Berkeley. He is a PhD
candidate in the Department of Computer
Science and Engineering at the University of
California, San Diego. His research interests lie
primarily in the area of scheduling problems for
computational Grid environments. In particular,
he is focusing on the challenges associated with
parallelizing entity-level scientific applications.

Dmitrii Zagorodnov received the BS and MS
degrees in computer science from the University
of Alaska, Fairbanks, in 1995 and 1997,
respectively. Since September 1997, he has
been working toward the PhD degree in com-
puter science at the University of California, San
Diego. His research interests include distributed
operating systems, with emphasis on fault-
tolerant network services.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 5, MAY 2003

